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INTRODUCTION

The present report gives a detailed description of a computer program for the calculation of
the noise produced by a rotor encountering a turbuient flow field. This represents the final product
of an extended research effort on this subject, beginning with a theareticai study of the leading edge
noise produced by an airfoil moving through turbulence!. Comparison with experimental and
further theory was given by Paterson and Amiet2. A more detailed examination of the effects of
varying the various parameters in the theoretical calculation is given in reference 3.

This computer program is critically dependent on the availability of relatively simple airfoil
response functions that include the effects of compressibility and skewed gusts.These are given in
references 4-8; anly the necessary relations are presented here. Also needed is a turbulence model;
that used initially was the Karman spectrum which can be found in many texts such as reference S.
This has more recently been extended, as discussed below.

This initial analysis was applicable to the case of the rectilinear mation of an airfeil. Using
the principles elaborated in references 10 and 11, the analysis was extended in reference 12 to the
case of rotary motion of an airfoil such as that of a propeller or helicopter rotor. This is based on an
integration of “instantaneous spectra” around the azimuth, and includes retarded time effects on the
generating source as discussed, for example, in reference 13. .

The analysis of reference 12 is not limited to isotropic turbulence; in principle, any
arbitrary turbulence spectrum can be specified. Because of lack of a good non-isotropic model,
however, the computer program was initially written assuming an isotropic turbulence. The
present program extends this by allowing a particular type of non-isotropic turbulence. In
particular, the turbulent spectrum input to the program is assumed to be produced by an isotropic
turbulence that has undergone a rapid contraction. The spectrum is caiculated by the analysis of
reference 14 (together with the program nated in the following paragraph for calculation of the
deformation tensor ). This is a minor extension of the classical analysis of Ribner and Tucker?5 in
which is calculated the spectrum of turbulence undergoing a rapid contraction. This analysis is
based on the concept that the turbulence is composed of vorticity, behaving purely kinematically and
moving with the local fluid velacity. The final vorticity distribution, and thus, the velocity
spectrum, can then be determined using the classical equations of Cauchy!€ for the distortion of
vorticity by a deformation.

The present program does not calculate the fluid deformation that is necessary to complete the
turbulence definition. The extension of the present program to include the non-isotropic case was
developed in conjunction with a fluid deformation analysis of Simonich. This is a mean flow
calculation that replaces the rotor and its wake by a series of vartex rings to simulate the flow field
induced by the rotor tip vortices. Further details of this analysis and calculations showing the use of
the two programs together are given in reference 17. The two programs can be used independently,
but the deformation program, aiso available as an ANOPP module, is intended to be used in
conjunction with the present noise prediction program. If this is desired, the ANOPP theory manual
describing the deformation program (the companion to the present theory manual), should also be
consulted. The programs have been configured so that the output of the deformation program is
directed as input to the present noise prediction program.

The present program can also be run independently. For example, an isotropic turbulence can
" be assumed; the deformation tensor input is then the identity matrix (the diagonal matrix with 1’s
on the diagonal). The program can also be independently run with any arbitrary deformation that
the user wishes to specify. This allows the user to investigate the effect of the any particular
deformation tensor on the noise.



ANALYSIS

A. Airfail in Rectilinear Motion

The noise model assumes a vertical gust Wg with the canvection velocity U, parallel to the x axis.

This gust impinges on a flat plate airfoil situated between -b <x <b and -d <y < d in the x,y plane. The
convection velocity U, of the gust is eventually set equal to the free stream velocity U, but the initial

derivation is performed with U, = U. Imposing the condition of no flow through the airfoil surface

leads to an unsteady surface dipole distribution leading to radiated noise. Linearized theory is assumed
throughout.

The vertical gust is assumed to be produced by an incident turbulence field. The Karman
spectrum is used as the basic model for the turbulence. This is modified 1ater to include the effect of
distortion produced by flaw gradients.

1. Leading Edge Noise

A gust of the form
W= w (ki ky) e TTHRAX = Ue) + k] (1)

is incident on the airfoil. In general this is a single Fourier component of a more complicated velocity
field wg(x - Uct,y) where

<<
wo(x = U ty) = II wgdk.dky (2)
-
The inverse Fourier relation is
R

i[kx(x - Uct) + kyy]

= 1 - 4
welkuky) = = [ [w (x-Ugty)e dx dy (3)
-R

where R is a length scale indicating the region over which the gust velocity field extends. The
convection velacity U, can be a function of kx and ky.

When this gust impinges on the airfoil, a surface dipole distribution is induced to oppose the gust
flow and satisfy the condition of no flow through the airfail surface. This surface dipole distribution
gives a pressure jump Ap across the airfoil; a normalized pressure jump g is defined as

Ap(X,Y,tike,ky) = 21PoU ¢W p(kx,Ky) 9(X,Kx,ky,M) e i(keUct = kyy) (4)

Integration aver kx and ky then gives for the pressure jump due to all wavenumber components:
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Ap(x,y,t) = 2PV CII WRo ei(k"u"t = kyy) dkx dky (5)

-
In the frequency domain

[+2]
ApT(x,y,w) = 2npoI wR()\,ky) g{x,X\,ky,M) e Tikyy dky (6)

where X is the specific value of ky such that A\ = w/U and the Fourier time integral is

;
= -fwt -
Fr(w) = —zl;ff(t)e dt To (7)
1

whereT = R/Uc.

Knowing the force distribution produced by the fluid on the airfoil, the far-field noise can be
calculated by noting that a force imposed on the fluid produces a dipole pressure field response. The
far-field pressure of a point dipole situated at x;,y,, aligned with the z axis and with strength F,

exp(iwt) is

= dFgwz_ ilwt+u(Mx-0)] -iulMx; - (xx; + 82yy;)/0] (8)

Po = 41cq0?

where the observer is located at x,y,z and

p2=1- M2 Ky = w/U
(9)
1 = MKy/B2 02 = x% + B2(y? + 22)

Equation (8) gives the far-field sound produced by a paint force and equation (6) gives the force
at a point an the airfoil produced by the gust in terms of the airfoil response function. Combining and
integrating over the airfoil planform gives the total far—field pressure. Thus,

db

p(x,0) =220 o ilwt+u(Mx - o)l o~ 1IMxy = (xxy + B2yy,)/a]
= 20002 IJ

-d -b (10)

@

JwR()\,ky) a0xe, XKy, M) e Y gk dx, dy,



An effective 1ift function £ per unit span can be defined as

b
-E(X,Ey,M) = LbJ’ g(Xl,X,Ey,M) e-iuxl(M - X/O) dX1 (11)

This function includes retarded time effects in the propagation of the sound from the airfoil to the
observer. For an observer overhead of the retarded source position (x/0 = M ) equation (11) reduces
to the lift/span.

It is assumed here that there is no spanwise variation of the airfoil characteristics (or at least
little variation on the scale of the turbulence or other upwash disturbance). The y, integration in
equation ( 1@) can then be performed. For an airfail situated between -d <y <d (where d = semispan)
the y, integration gives the factor

A=l sinii(fi-a-zl;s?/c)] (12)
so that from equation (10)
®
pr(x0) =1 25250 llot rulMx= o)l [ wROK) (KR M) A dky (13)

In general, this final ky integral cannot be evaluated in closed form. Thus, the integral must be
evaluated numerically if an exact result is desired. However, for an airfoil span large compared to the
dimensions of the upwash disturbance a simple approximation can be made. In this case (Ad >> 1) the
expression in equation (12) varies rapidly between positive and negative values, giving a cancelling
effect, except where

ky=u82y/05Ky (14)

Thus, the function in equation ( 12) acts like a delta function and wo and £ can be maved outside the
integral by setting ky = Ky in these functions. The remaining integral of x~1sin x is equal to m; thus

bz

Pr(x®) =i TP wo(hKy) L(X,Ry,M) e u{Mx - o)
0

(15)

where the factor exp(iwt) has been omitted. This can be Fourier transformed using the inverse of
equation (7) to find the far-field time history of the pressure; i.e.,

@

p(t)=I pr(w) e do (16)

Equations (15) and (16) give far-field expressions appropriate for the case of a deterministic
velocity field such as the case of an airfoil cutting a vortex. The case of interest here is that of an
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airfoil in a turbulent flow field for which the upwash velocity is not deterministic. The result for this
case was derived in reference 1, and can be obtained from equation (15). Because infinite span
airfail response functions are used (thereby neglecting end effects) the problem is modeled as a
turbulence region located between -d < y < d incident on an infinite span airfeil. Also, the turbulencz
is assumed to be located between -R < x < R, where R is a large length scale that can later be allowed t3
approach infinity. This avoids convergence difficulties in the integrals that would appear if R were
immediately set equal to infinity.

For a random function f(y) which is nonzero between -d < y < d, the spectrum function ¢ is
related to the Fourier transform of f by (see Appendix A)

o(ky) = (11/d) E[F4(ky) Fy" (ky)] (17a)

where E represents the expected value and

d
Fg (ky) = b If(y)e’ikyy dy (17b)
-d

Equation (15) is multiplied by its complex conjugate and the expected value taken. Then using
equation (17) the following relations hold

Elpr(@) py” (@)] = (T/m) Sppl@)

(18)
E[lwp(X,Ky) wo ™ (A ,Ky)] = (R d/m2) &, (X,Ky)

Thus,

Sppl®) = [wbzpa/(ca?)]2 MUy d |L(X,Ky,M)[2 &, (X,Ky) (19)

This agrees with equation ( 18) of reference 1.

2. Airfoil Response Functions

As discussed in reference 4, when calculating an approximate airfoil response function it is
natural to divide the frequency range into a low and a high frequency regime. The ratio of airfoil chord
to acoustic wavelength determines which regime is appropriate for a particular case.

For simplicity the case U; = U is considered; i.e., the incident disturbance convects at the free

stream velocity. Thus, A = Ky. The additional complexity is not needed here, but if results for the case
U, = U are needed, they can be derived using the method of references S and 6.

For low frequency and an airfoil situated between -1 < X < 1, the normalized pressure jump is
found to be’

X1

0(x, R0 M) = L of 12X () o KKIMZX + (M)]

T8 1+ H¢0.4 (20)

x|



where »
f(M)=(1-8)InM+8In(1+B8)~-1n2 Kx = Kx/B2

Here S(k) is the Sears function? and the overbar on a quantity signifies normalization by the
semichordb.

In deriving the airfoil response function for high frequency an iteration procedure is used which
alternately corrects the boundary condition at the leading and trailing edges. The first two terms in
this series are

= 1 -i®3
91(x,Ky,0,M) = = = e
S myYm(1l+ MKl +x)
(21)
v - 1 3 * 0 < "i®3
QZ(X,Kx.Q,M)" — [(1+')E (zu(l-X))‘ 1] e
my2n(1+ M) Ky
with @s=0 (1-M)(1+X)+m/4-Ky
and where E* is a combination of Fresnel integrals; i.e.,
X
1 -iE d§
E*(x) = J' e — (22)
Y2mn 43
0

By comparison with numerical results of Graham® these results for g are found to be accurate to
within a few percent if the changeover from low to high frequency is made at the value u = @.4; the
combination of the twa functions becomes more accurate as U moves away from 0.4.

These values are for parallel gusts; i.e., Ky = @. Values for ky = @ can readily be found for the
case U, = U using the similarity resuits of Graham?®. Depending on whether the gust-airfoil

intersection paint moves subsonically or supersonically relative to the fluid, the airfoil response
function is similar to either the 3-D incompressible solution or the 2-D compressible solution
respectively. Results are given here for the supersonic sweep speed case, but the results for the
subsonic case readily follow if the appropriate analytical continuations of the various functions are
employed.

For a gust-airfoil intersection that moves supersonically relative to the fluid, the airfail
response function is related to that for ky = @ by

iXKyZ/Kx

g(x’EX,KV,M) = (BQ/B) g(x’Ex.,egMn) e (23)
where
B.Z = 82( 1+ Kyz/sz) M.Z = MZ - 82 KyZ/sz
' (24)
KX./B.Z = KX/BZ U = M. Kx./Boz



This relation leads to the following results for g

= = 1 1-X =y i[UMX + f(Ma) K] -
= v — - - 04 25
g(X,Kx,Ky,M) e 1+ x S(K¢' )e Ue €O ( )
= = 1 -i@4 -
(x,Kx,Ky,M) = = = — 3 Lle > 0.4 (26a)
% Y myYnke(1+Ma)(1+Xx)

a2 (%, KKy, M) = g (%, KKy, M) ¥ (1 +X)/2[(1+1) EX2Ks Mal1-%)) - 1]  (26b)

where @4 =Ky [Ma(1+X)-M2X~1] +n/4
The effective 1ift £ can be calculated using equation (4) to be
v % - - -
L(Ra,Ry,M) = B-1S(Re*) & 1K 1M 1 (Gx/0) - idy(iix/o)] Ba<0.4  (27)

-t1(Kx,Ey,M) = YZ E*(20;) e 1©, Ue > 0.4 (28a)

m 7K;(1+M.)®1

i® .
L2(Ra,Ry,M) = alen [iC1-e712®) 4 (1 - DEX(4RaMa)
0, ? 2Ky (1 + M)

{7 e‘i2®1

- A EX(20(Ma/M + x/a))] ] (28b)
where @, = H(Ma/M - x/0)
@ =k +1U(M-x/c)-1n/4 (29)

Here X = Ky so0 that @, reduces to ®, = Ky (1 - Mx/qg) - /4.

3. Spectrum Function - Karman spectrum
When the forcing function is a random phenomenon such as flow turbulence certain analytic

expressions are available to represent the spectrum. A widely used model for isotropic turbulence is
that of von Karman. For this model the spectrum is written

By (Keky,k ) = =KL (1 -k 2/k2)

for the three-wavenumber spectrum and
w2 K2+ K2
wa(kx,ky)= 4 y - Y (31)

M K& 1+ K2+ K2



for the two-wavenumber spectrum where

ECK) = Ik
[1+ (k/kg)2]T?/8
(= 55 _I(5/6) W2
oym T(1/3) k¢
(.= T I(5/6)
¢ L T(1/3)

(32)

and the circumflex on K signifies normalization by ke Further discussion of this spectrum function

can be found in texts such as that of Hinze®. Also, additional resuits pertaining to the Karman

spectrum are given in Appendix 1 of reference 1.



B. Airfoil in Circular Motion

With certain restrictions, the principles of the previous analysis for an airfoil in rectilinear
motion can be applied to the case of a rotor. A flat plate airfoil of zero thickness can be represented by
dipoles for bath the case of rectilinear motion and circular mation (such as for a propeller). The
far-field pressure for a dipole moving along a curved path was shown by Lowson?? to be

1 EM
p= [4ncor2(1-Mn)2 x (E*T-—MI,I,)] (33)

where the square brackets imply evaluation at the retarded time and Mn = M,.-ﬁ is the acceleration

component of the dipole in the direction of the observer. The f term represents the sound produced by
an unsteady force and would be the same for the same force in rectilinear motion. The Mn term gives

the sound produced by a force of constant strength under acceleration. If the frequency w of the for_ce
is much greater than the rotational frequency Q of the rator, the £ term is much greater than the Mg

term, and it is as if the dipole were moving in rectilinear motion at that instant of time.

For incident turbulence noise of not too low a frequency, as well as being able to neglect the the
Mn term, the blade force amplitude for a rotor is the same as for an airfoil moving in rectilinear

motion. The high frequencies are produced by small eddies, and small eddies are cut completely by the
airfoil before the airfoil undergoes any appreciable rotation, and this small rotation has an
insignificant effect on the airfoil-eddy interaction.

Thus, the results of the previous section can be used to calculate the noise of a propeller or
helicopter rotor at any instant of time. This result can be averaged over the period of rotation to
obtain an average spectrum. This is a standard technique for time varying spectra as discussed by
Bendat and Piersol?!; it gives a result appropriate for comparison with measurements made by a
spectral analyzer if the measurement time is significantly greater than the blade passage time.

The geometry of the problem is shown in Figure 1. The origin of the x,y,2 coordinate system is
fixed to the rotor hub with z along the rotor axis. The axial compaonent of flow is in the negative 2
direction. The observer, fixed relative to the hub, is in the x,z plane at a distance r from the hub. The
line from hub to observer makes an angle 8 with the z axis. The vector M, representing the non-axial

component of flaw, is at an angle ¥ to the y axis; for ¢ = 1809, M; is along the y axis. The angle ¥

-represents the angle the blade span makes with the x axis; i.e., 7 = wt, and for ¥ = @ the blade span
lies alang the x axis.

Because the blade is assumed to be a flat plate with zero steady loading, a blade segment makes an
angle a with the x,y or azimuthal plane where

cot o = [My + M¢cas(y + §)1/M, (34)

and M, is the azimuthal Mach number of the blade segment relative to the rotor hub. Due to the

assumption of linearized theory, the blade segment need not be exactly aligned with the flow, but can be
lightly loaded. The angle should not differ significantly from the value given by equation (34),
however.

Because of the skewed inflaw, there is a spanwise component M, of flow over the blade where

M, = -Mgsin(y + §) (T cos 7 + sin v) (35)
9



The chordwise component M, of the rotor segment Mach number is
M = [My + Mgcos(y + )] (-Tsiny +Jcosy) +K M, (36)

The expression given by equation (19) for the far—-field of an airfesil in rectilinear motion is
written in terms of the present airfoil position. In order to be able to apply this relation to the
rotating airfoil segment, the equivalent of the present position must be calculated for the airfoil
segment. This "present position" is the position of the airfoil segment relative to the fluid if it were to
move along a rectilinear path during the time for the sound to propagate from the source to the
observer. An alternative methad is to rewrite equation (19) in terms of the retarded source position.
Both methods should be of equal difficulty and should give the same results. The former is used here to
remain consistent with previous publications by the authar. :

Both methads begin with a calculation of the retarded source position of the airfoil segment (or
the rotor hub since distances on the order of the source size are not important when calculating the

source positian for a far-field observer). If atatime t = @ a marker is placed in the fluid and a burst
of sound is emitted, at time t = Te, when the observer hears the sound burst, the marker has moved to

position x.. The observer is at

Xo=r(isin@+Kcos9) (37)

The distance r, of the observer from the retarded source paint x¢ is
re2 = (rsin@ - xg)2+ y2+ (rcos® -2z,)? (38)

Also,

Te =Te/Ca (39)

Since M, and My are given by

M¢= =M (T siny + J cos y) (40)
the retarded source coordinates are

Xg = -Tg Co Mgsin g = -M; resiny

yg = ~Mgrocosy (41)

2,=-M,r,

Substitution of equation (41) into equation (38) leads to the following results for Fe

re=r[Mscos®+ {1-Mszsin2®]/(1-Msz) (42)

where
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Ms

M¢+ M, Mg? = Mg + M2
(43)
Mg cos ® = Mgsinysin 6 + M, cos 8

By calculating (Mg/M¢)+(-Xo), @ is shown to be the angle between the convection Mach number
Mg and the vector linking the observer and the source, -x,. Substitution of equation (42) into
equation (41) determines the retarded source position x,.

The "present” source position Xp is found by adding to the retarded source vector a vector giving
the chordwise airfoil movement during the time T,. The spanwise component of fluid velocity is

ignored here since it was ignored in deriving equation (19). This is allowable since in calculating the
noise of an infinite span airfoil in rectilinear motion, any spanwise flow velocity can be eliminated by
a coordinate transformation. The only purpose of calculating the "present” source position is to find
the appropriate coordinates for use in equation (19). This position is

Xy =Xg+Mpco T, (44)

p

Introducing equations (41) and (36) into equation (44) gives
Xp/Te= -T[Mt siny + M¢cos 7 sin (7 + ¥)] + j[Mycos 7 - Mg sin 7 sin (7 + )] (45)

For acoordinate system at this “present” source position the observer has coordinates X1 given

by
(46)

Equation (19) is appropriate for a coordinate system in which the flat plate airfeil lies in the

X,y plane with the span along y. The x; coordinate system abave must be rotated to the same
orientation with respect to the airfoil. Rotation of the x; system about the z axis by an angle w - ¥
gives a system which will be called the x, system with y, painted along the airfoil span. Rotation of
the x; system about the y; axis by an angle a gives the x5 system with xs along the chord pointing
from leading to trailing edge. The relations between the x; and x5 systems are

x3z = (x;siny - y;cos 7) cos & - 2; sin &

Y3 = X1 €COS 7 + Yy siny (47)

23 = (X siny - y; cos 7) sina + 2; cos &

The observer coordinates in the xs system are the coordinates needed in equation (19). From
equations (45) - (47) and equation (37) the observer coordinates in the x5 system are

X3 =roMicosa - rqcos
Y3 =XoC0s7 + Mgr sin (7 +y) (48)
25 = (Xosin7 + ryMy) sina + zg cos a

where

cos & = cos 8 sin & - sin 8 sin ¥ cos a ro2 = Xo2 + yo2 + 242 (49)

11



$ is the angle between the x3 axis and the line from the observer to the rotor blade segment. This can
be seen by replacing x; by Xo in the expression for x3 given by equation (49) and substituting for xo
using equation (37).

1. With No Blade-Blade Correlation
Equations (48) - (49) give the appropriate “instantaneaus observer coordinates” to use in

calculating the sound spectrum from equation (19).-The angle ¥ = wt is a function of time. In order to
calculate the time averaged spectrum, an average around the azimuth must be determined. This
average must account for both the Doppler shifting of frequency as the airfoil segment moves relative
to the observer, and the retarded time effects as the blade moves around the azimuth. The latter
correction is needed because the blade spends different amounts of time, in the acoustic sense, at each
azimuthal location. As noted in reference 12, the proper azimuthal weighting is the factor w/wg
where w is the frequency of the airfoil forces and wq is the Deppler shifted frequency. The
azimuthally averaged spectrum is then

2n

s (xw)=—1-j—°’- 'y p (X,00,7) d7 (50)
ppt <y 21 we PP 0
0

The spectrum S’pp(x_,mo,‘r) for the case of relative motion between saurce and abserver is related to

Spp(g,wﬂ) with no relative motion by the Doppler factor w/wg; i.e., as shown in reference 13,

S'pp(z,coo,*/) = (0/wo) Spp(X,0,7) (S1)

Thus, equation (50) and (S1) together introduce a factor (w/wg)2.

The Doppler factor w/wq is shawn in references 12 and 13 to be

__2)_)_0 =1+—-—t———. (52)

where M, = Mach number of source relative to observer
M. = Mach number of source relative to fluid
$°0 = unit vector from retarded source position to observer.

In vectar notation

My= M (-Tsiny +jcosy)
Mp =T (Mgsiny - Mgsiny) + 7 (Mgcos ¥ + Mycos 7) + K M, (53)
0S=1(x-xg) +J(y-yg) +K(2-2)

Using equation (41) and the fact that QS| = r, gives the unit vector

12



§°0 =1 (x/ry+ Mgsiny) + I Mgcos iy + K (2/ry + M) (54)
and finally from equation (65) and S°0 = - 0"S

© L. M ¢[x sin 7 - Mer, cos (7 + ¥)]

Wo (1-M2%r, -xMgsiny-2M,

(55)
L MI[x siny - MIr'E cos (v + y)]

Y1- (Mf2+ Mzz) sin2 @

The final result for the azimuthally averaged spectrum is given by equation (50), (51) and
(55) with Spp(z,w,'r) in equation (S1) given by equation (19). The x,y,z coordinates to be used in

equation ( 19) are xs3,Y3,23, respectively, given by equation (48).

2. With Blade-Blade Correlation

The technique of averaging the instantaneous spectrum around the azimuth is valid if there is no
correlation between the spectra for points widely separated in time. For the case of turbulence
interaction, however, this is not necessarily true. The larger turbulent eddies can be cut more than
once while passing through the rotor plane and the spectra from these events are correlated.

For the case where blade-blade correlation exists, the autocorrelation function would consist of
a series of peaks, such as shown in Figure 2, the n‘th peak representing the correlation of sound from
the zeroth blade with that of the n’th blade. The correlation function for the multiple blade passage
case can be written

-]
R pp(¥,7’T) = z R (pnp) (.X_’V,T - nTZ) (56)

n=-ow

where Rpp(") represents the cross-correlation of the far-field sound from the n’th blade with that

from the zeroth blade. The time T, is the time, as heard by an observer, between blade chops of any
given eddy.

Figure 3 illustrates the geometry of the multiple chopping. The blades move along line AD. The
blades are assumed to be moving rectilinearly in the vicinity of the eddy; this is a reasenable

assumption provided that the eddies are not too 1arge. The eddy moves in the chordwise direction
relative to the airfoil with Mach number M, given by equation (36). After atime T, the eddy has

moved down from the rotor plane a distance
FE = Tt VZ (57)
and in the plane a distance

FC =Ty Vscos(7+ ) (58)

At time T blade 1 is at point C; the distance BC is
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BC=(T-T1)Vt (59)
The distance Z is then

22= BF2+ FE2 =TV, 2 + [(T - T;) Vy - Ty Vecos (7 + y)]2 (62)

This distance is the minimum between the lines ED and BG if BE is normal to these two lines. For this
to be true, BD2 = BE2 + ED2 or

22=T2V2 - T2 {V,2 + [V, + Vscos(7 + )12} (61)

Equations (73) and (74) can be solved for T, and Z giving

Ty =T (V¢/V,) sin & cos & 2=TV,sina (62)

Equation (19) for the far-field spectrum of an airfoil was obtained by multiplying equation
(15) by its complex conjugate and taking the expected value. The equation for the n’th blade passage is
equation (15) with the additional factor exp(ik,nZ) to account for the 25 distance nZ of the n’th blade

path from the zeroth blade path as measured with respect to the fluid.

The time T, is the time T, plus the additional time difference for the sound from point B in
Figure 3 to reach the observer as compared to the time for the sound from point C to reach the
observer. From the last factor in equation (15), the time for the sound to reach the observer from
point C is

To = (Mpx-0)/(ceBp?) (63)
Replacingx by x + Xand y by y ~ Y where
X=BC=(T-Ty)V Y =Ty Vesin (7 +§) (64)
gives the time Ty for the sound to propagate from point B. Taking the difference between T; and 74,
AT =X (Mp - x/0)/(By2co) +Yy/(co0) =T - T, (65)
Then, T, can be determined from equations (62), (64) and (65).

Taking the Fourier transform of equation (56) gives

in(.l)oTz

@
S pp (%, 00, 7) = § 8 W(x, w0, 7) e (66)

N=-o

The cross PSD, Spp(") is found by multiplying equation (15) by its complex conjugate with the
additional factors exp (ikzZn) as noted before, or from equations (19) and (S51)

-]

; b ;
' (x,00,7) = J(-w—c%)znubd(m/wo)l.t()\,Ky,M)lz & Kok e 2" gk (67)
-

Introducing equation (67) into equation (66) and using the identity
14



zeiZﬁna = S&(n+a)

n=s-o N=-o
gives
§' o y= (22298 Y 1y 4 (w/wo) | EOKy,MIE b2 S & iy (MK
o] ] X,W,7) = CoO n b W/ Wo iNY» l"g__mww Ny,
where

K,M) = (woTz + 21n)/2
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C. Turbulence Contraction

The analysis used here for calculating the spectrum of turbulence being subjected to a rapid
contraction follows the general method of Ribner and Tucker!S, It has been generalized slightly to
allow for non diagonal defarmation tensors, although in principle these results could be derived from
the Ribner and Tucker results by first transforming to principle coordinates. The analysis is based on
the fact that vorticity follows the flow. There is assumed to be no interaction of the vorticity with
itself. The details of the analysis are presented in reference 17. A summary of the necessary
equations is given belaw, and a fuller derivation is given in Appendix B.

The upstream and downstream coordinate systems are designated by the two coordinate systems
eV and ed respectively where e is a matrix e(i,j) composed of the three unit vectors along the axes.
e(i, 1), e(i,2) and e(i,3) denote the three components of the unit vectors parallel to the local
vorticity vector Q, the local turbulence velocity and the unit vector in the direction of the wavevector,
respectively. The relation between e(i,1)Y and e(j, 1)9 is readily obtained from the knowledge that
vortex lines follow fluid particles. The relation is then obtained from the Cauchy relation

Q;U = (ax/38)) (71)

where ax-/agj represents the deformation tensor, x; represents the upstream particle coordinates and
g] represents the downstream particle coordinates. In the computer programs dx; /agl is represented

by DXDZ(I,J). The relation between e!(i,3) and ed(i,3) can be found by consideration of the manner
of distortion of a sheet of vorticity between upstream and downstream: since vorticity follows the
fluid, a pair of vectors lying in this plane upstream also lie ln the corresponding downstream piane,
and the wavevector is normal to the plane. First assume that e (1,)) is given. Thus, if Q] is replaced

in turn by e9(i,1) and e9(i,2), two vectors are found, the cross product of which lies along e¥(i,3).
The remaining vector e¥(i,2) can then be found by the cross product of e¥(i,1) and e¥(i,3).

Knowing the relation between eY(i,j) and ed(i,j), the relation between the downstream and
upstream wavenumbers is given in Reference 17 as

kd/kY = eU(1,3) ed(},3) ax;/¢; (72)

The relation between fluid velacities is

g;¥(kY) = qd(k9)f,Y e(i,2) k9/kY (73)

where f,Y is the magnitude of the vector found by replacing de in equation (71) by e(j,1).
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List of Symbols

Blade number

Airfoil semichord

Airfoil chord

Sound speed

Airfoil semispan

Expected value operator

Energy spectrum; see Eq. (32)

Fresnel integrals; see Eq. (22)
Frequency measured by observer
Function of Mach number; see Eq. (20)
Normalized airfoil response function; see Eq. (4)
Factor defined by Eq. (32)

Unit vectors in the x, y and z directions
Bessel functions

x and y wavenumbers

Wavenumber defined by Eq. (32)
w/U

K, /82

up2y/o

Turbulence integral length scale
Effective 1ift; see Eq. (11)

Free stream Mach number

Spanwise flow Mach number over blade

Chordwise Mach number of blade

Flight Mach number in rotor plane

Mach number of rotor segment relative to fluid
Mach number of blade segment relative to rotor hub
Flow Mach number along rotor axis

Unit vector from retarded source to observer
Fourier time transform of p

Pressure jump on airfail produced by all qusts
Far~field pressure of dipole

Magnitude of turbulent velocity in Appendix B
Turbulent velacity in Appendix B

Distance from observer to retarded source

Distance of observer from rotor hub

-X

Integration limit for spatial Fourier transform
Autacorrelation of far-field sound

Cross correlation of far-field sound from n‘th blade with that of zeroth blade
Cross spectrum of airfoil surface pressure

Far-field acoustic spectrum for aobserver fixed relative to blade segment
Far-field acoustic spectrum for observer fixed relative to blade hub

Time between blade passes
Time between eddy chops
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Overbar
Subscript

Time between eddy chops as heard by observer
Time between emission and reception of seund
Time

Mean square turbulence level

Stream velocity

Component of fluid velocity along airfoil chord

Turbulence convection velocity

Flow velocity in rotor plane

Azimuthal velocity of airfail segment
Axial flow velocity

Gust velocity

Spatial Fourier transform of gust velocity

Cartesian coordinate system; flow along x and y along span
Vector from rotor hub to observer
Vector from rotor hub to retarded source position

Hypothetical "present source position” defined by Eq. (44)

Vector from “present source position” to observer
Observer position in rotated coordinate system
Distance defined by Eq. (64)

Distance defined by Eq. (64)

Distance defined by Eq. (62)

Out of plane angle of rator blade

1 - M2

1 - sz

Gamma function

Azimuthal blade angle

Angle defined by Eq. (43)

Functions defined by Eq. (29)

Angle of observer from upstream rotor axis

o /Ug; also, in Appendix B this is the wavelength
MK, /82

Density of air

x2 + B2(y2 + 22)

Time between eddy chop and when observer hears it
Angle defined by Eq. (49)

Velocity spectrum of turbulence

Angle of flow in rotor plane; see Fig. 1

Radian frequency measured by observer fixed relative to rotor hub; also, vorticity in

Appendix B.

Dopgler shifted radian frequency measured by observer fixed to rotor hub

wé /U

Fourier transformed variable
Normalized by semichord b

Denotes similarity variable; see Eq. (28)
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Appendix A: Relation of Fourier Transform of a Random Function to Its
Spectrum

If f(y) is a random function of y between - ¢y < @, the infinite Fourier transform between
these limits is not defined, in general, because of convergence problems. If, however, finite limits are
placed such that f(y) is random between -d <y <d and f(y) is zero outside this range, a Fourier
transform

d

Fa(ky) = 5= I e Ky f(y) dy (A1)

-d
can be defined for any particular sample f(y). The cross correlation function R is
R(M) =E[f(y + m) f(y)] (A2)

The spectrum ¢ is the Fourier transform of R so that

(-} [ <]

otky) = 5 | R(m) e ™Y o = o [ ElrCy + ) f(y1e” M gn

d
-2-1;'- E [f(y)I fey e KOV -0 g ] (A3)
=d

E [Fd(ky)e”‘yy f(y) ]

Integration over y then gives

2d ¢(k, ) =2mE[ F (k,) F*(k,) ] (A4)
y &ty 'd My

which is equation (17).
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Appendix B: The Spectrum of Turbulence Undergoing a Rapid Distartion

The fallowing analysis calculates the change in wavevector and fluid velocity for a turbulent flow
undergaing a rapid contraction. A sketch of the problem is shown in figure 4. The analysis begins in
Section 1 by deriving the relations between vorticity and velocity for a particular wavevector
component at a paint. These results are derived from the assumed sinusoidal variation for the velocity
field of a wavevector component.

In section 2 the equations for the transport of varticity are used to derive a relation between the
pre-contraction and post-contraction velocity vectors of a wavevector component. In section 3 the
same transport equations are used to derive a relation between the pre-contraction and
post-contraction wavevectors.

Finally, in section 4 the results are compared to the results of Ribner and Tucker. Agreement is
found for both the wavevector and the fluid velocity transformation.
1. Relations Between Velocity and Vorticity

In calculating the noise generated by a rotor moving through a turbulent field, a required input
is the turbulence spectrum as a function of the wavevector

k=Tky+Tky+Kkk, (B1)

The velocity field q of a single wavevector Fourier component can be written

qd(k9, x) = 0d(k9) ek " X (B2)

where the d superscript refers to the downstream or post-contraction location, at the rotor face. The
superscript u will refer to the upstream pre-contraction velocity field. The object of this section is
to relate the two velocity fields. In equation (B2) Q and k are orthogenal from the assumption of
incompressible flow (see figure 5). Thus, Q can be written as the cross product of k with some vector
P;i.e.,

a(k) =k xP(k) (B3)
The superscripts u and d are not used here since the equation can be applied to either region.

The vorticity field w of the wavevector Fourier component is given by
w=Vxg (B4)

so that from equations (B2) and (B3)

@(k,x) =ik xQ(k)e'® %X =i[k(k-P)-PKe]e k"X (85)

From equation (BS) it will be noted that
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cw=0 (B6)

Ix

Writing
@(k,x) = Q(k) elk - X (87)

Q is to be solved for in terms of Q. Then, knowing how Q transforms between pre-contraction and
post-contraction locations, the behavior of the velacity field will be known. From equations (BS) and

(87)
Q(k) =i[k(k+P) - Pk?] (B8)

On taking the cross product of this equation with k, the first term on the right hand side drops out
leaving

kxQ=-ik2k xP = -ik2Q (B9)
This gives two equivalent expressions for relating vorticity and velocity of a Fourier component

Q=ikxQ Q=ikxQ/k? (B10)

2. Relating Pre-contraction and Post-contraction Velacities

The relations between pre-contraction and post-contraction are now considered. The vorticity
of a fluid particle is related by the deformation tensor. Using an expression attributed to Cauchy!é

Q9 =Q,Y 3¢,/ 0x; QU=q ax;/ 3k (B11)

where X; represents the pre-contraction coordinate system and §; the post-contraction coordinate
system. Both coordinate systems are assumed right-handed and orthegonal. The coordinates of a fluid
particle also transform according to equation (B11). For example, consider a cube of
post-contraction fluid with edges parallel to the axes. The edges can then be written (4,0,0), (0,1,0),
(0,0,1) where & is the 1ength of the side of the cube. By writing each of these vectors as a row vector,
the three together form a 3x3 matrix c® which can be written

cd=g1 (B12)

where I is the unity matrix. The three upstream transformed vectors denoting the cube are then given
by

cY =cd[ax;/a;] =1 [ax;/a¢)] (B13)

where [axi/ag j] denotes the deformation tensor defined as
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ax( /88, Ox1/3E, axy/dt 3 |

ax{/3E = axo/3E | Oxp/3k, AXHIE3 (B14)

| x3/0k| 9x3/3Eo Ix3/dt3 _
The pre-contraction volume of the cube is then given by the cross product of two of the vectors with
the dot product of the third, which is the same as the value of the determinant of the matrix. For
incompressible flow this must be 43, the same as the post-contraction value. This requires that the
determinant of the deformation matrix in equation (B14) be 1.

The following paragraphs will give the detailed procedure for transforming between
pre-contraction and post-contraction velacity fields. One basic assumption of the analysis to follow is
that fluid planes in one coordinate system remain planes after deformation. This assumption will be
grossly incorrect, in general, on a large scale. However, it becomes more and more accurate as
restriction to smaller and smaller scales is made. The assumption should thus be adequate if the
turbulence scale is small compared to the scale of the distorted flow. The assumption arises when a
one-to-one correspondence is made between a pre-contraction and a post-contraction Fourier
component of the turbulence. Each Fourier component consists of a vorticity distribution over all
space, whereas the deformation tensor is a function of position, and the flow is distorted by different
amounts at different points.

The relation between the pre-contraction and post- contractlon wavevectors has yet to be
determined. For the present they will be denoted by kY and k with the assumption that the two
wavevectors are related by the deformation tensor in some manner to be determined later. Equations
(B10@) and (B11) can then be combined to obtain a relation between the pre-contraction and
post-contraction velocity field. Equations (B11) relate pre~contraction and past-contraction
vorticity levels while equations (B 10) relate velocity to vorticity at either pre-contraction and
post-contraction location.

Combining equations (B10b) and (B11b) gives

0;UCkY) =1 (k;U7k2¥) @ 9(k9) (8%, /3E,) €5 (B1S)

where Cartesian tensor notation is used. Summation over repeated indices is assumed, and €k is the
alternating tensor. Using equation (B 10a) to substitute for Q d gives

0;4(kY) = = (k;47k24) k90 9k €0 (9%, /3E) €55 (B16)

This equation relates the pre-contraction and post- contractlon velocities if the relation between the
pre-contraction and post-contraction wavevectors k" and k is known; this relation will be
determined shortly. It should be noted that although the spatial coordinates of the pre-contraction and
post-contraction locations do not appear explicitly, they do appear implicitly through the deformation
tensor. Thus, even though the velocity field has been decomposed into spatial Fourier components, this
is in some sense a lacal decomposition.

In applying equatlon (B16), in addition to specifying the deformation tensor and wavevector of

interest, the velocity Q 0? must be specified. The am plltude of O is not of concern since the ratio of
amplitudes is all that is needed. The direction ofg must be specified, however. Once 5 is specified,
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@9 can lie anywhere in the plane normal to k9 since k9 and Q9 are normal for the velocity modes
considered. For the speclﬁc case of an alrfoﬂ moving through the turbulent field consider a plane
formed by the vector k and a unit vector n normal to the airfoil surface. Then for the specific k kd
vector chosen the velocity field can be decompased into a companent in the plane formed by the vectors
k and h and a component normal to this plane. In calculatmg the airfoil response to turbulence usinga
hnearlzed analysis, only the velocity component along n will glve a contribution. Thus, any component
of 0 normal to the k n plane can be neglected. This allows 0 to be specified as normal to k and in
the k , i plane.

3. Relating Pre-contraction and Post-contraction Wavevectors

The only remaining relation to be determined in equation (B 16) is that between kY and kd i.e.,
how the wavevectors of the moade considered become distorted in going from upstream to downstream.
As w1th qQu and Q the wavevectors will be related through the deformation tensor. The three vectors
Q a9 and k form an orthogonal system. In addition, k is assumed to be m the direction Qd x 0 S0
that the system is right handed. Define vectors &34, 8,94, &40:U along QY gdhY, and kd-U
respectively where either d or u is read, not both. Flrst the relations between e“ and ea-wﬂl be
determined and then the relation between kY and k As a matter of notation, note that subscripts here
can refer to either components of a vectar as in the Cartesian tensor notation of equation (B16), or to
a specific vector such as &,, €, £s. Generally the meaning will be clear from the context since é
already indicates a vector and the subscripts 1,2 or 3 then indicate a specific vector, not the
companent of a vector.

The relation between é,Y, é,d is readily obtained from the knowledge that vortex lines follow
fluid particles. Since &, is parallel to Q, equation (B 11) immediately gives &,9; i.e., if f, defines the
direction of &,Y, then

(%) = (e (ax;/88)) 6,9 = 1,9/ 1,Y) (B17)

where the j subscript on ed naw indicates one of the three Cartesian components of the vector é’,d.
Also, the summation convention over repeated indices is assumed.

To calculate the vector €,Y, it is not sufficient to merely substitute subscripts 2 for 1 in
equation (B17). The resulting vector so defined would nat necessarily be orthogonal to €,". Therefore
adifferent approach will be used, first calculating e3Y, then &,Y. First define a vector

(129); = (&%) (ax;/3k;) (818)

As noted above, this vector wm not in general be orthogonal to &,Y. However, it will lie in the same
p]ane of vortlclty as e, and ez For example, consider a plane of vortex lines defined by the vectors
e1 and ez . Because the vorticity moves with the fluid and because equation (B 18) is a Lagrangian
type of equation following fluid particles, f,Y must lie in the same plane of vortex lines. Thus,
although €,Y hasn’t yet been determined, €3Y can be found since it must be normal to the plane defined
by €,Y and f,Y; i.e.,

-~

€sY=¢€,Yxf,U/]8Yx1,Y (819)

where, as in equation (B 17), the denominator is for the purpose of normalizing the result to a unit
vector. Finally, €;! can be found directly from é," and ésY; i.e.,
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égu=ésu*é1u . (820)

Now the relation between k! and k9 can be determined. This relation is found from the relations
between wavenumber k and wavelength A

kY= 2m/\Y kd = 2m/0d (B21)

along with the value of f3Y obtained by replacing Lc_d with de in eq‘ﬁation (B11a) and by the knowledge

that kY and k9 are parallel to the vectors &34 and & 59 respectively. Consider a vector Adé5%in the
post-contraction fluid. If this vector begins on the crest of a wave of the turbulence wavevector
component, it will reach just to the next crest since the vector has magnitude A4 see figure 6. In the
pre-contraction fluid the vector begins and ends on the corresponding adjacent crests, but not
necessarily along the shortest distance; i.e., the vector will not necessarily be along ézY. If this
upstream vector is denated h3Y, then following the definitions in equations (B17) and (B18)

(hs¥); = A9(f54); = A(es) (ax;/ %) (B22)
The component of hsY in the direction of &35Y must have a length AY from the above discussion. Thus,

AU = pgu .§3U=)\d(esu)i(e3d)j(axi/agj) (B23)

From equation (B21)

K7k = (e5Y); (e3%); (ax;/8E;) (824)

The relations between the pre—contraction and post-contraction values of both wavenumber and
velacity can be determined from the above relations. The procedure is first to find the three
pre-contraction éY vectors from the three post-contraction &4 vectors using equations (B 17) through
(B20). The ratio k9/kY can then be found from eguation (B24). Finally, QU can be found from
equation (B16).

Several of the vector operations in equation (B 16) need not actually be carried out. The
necessary operations have already been performed in deriving the éY vectors. Thus, since k]d and Omd

are orthogonal,

k]d Omd (]mn == (e‘d)n kd Qd (825)

The vector (el")j axi/a;j has already been calculated in equation (B 17) and is the vector f,;Y parallel
to €,Y. Thus equation (B16) can be written

QiU(KU) = Qd(ﬁd) flu é‘zu kd/ kU (B26)

A computer program was initially written using equation (B16). This was changed to the simplified
version using equation (B26), and the programs were found to agree.

4, Comparison with Results of Ribner and Tucker
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a. Wavenumber Relation

Ribner and Tucker!S have performed this same analysis, but for the restricted case where the
deformation tensor is diagonal. This is no restriction in principle since a rotation to principal
coordinates can always be performed in which the deformation tensor is diagonal. In practice the
present method may be simpler. The present results will be examined to verify that they reduce to
those of Ribner and Tucker. -

The deformation considered by Ribner and Tucker is

ax 9"t 0 (']
Tg] ] = 0 ,"t 0 (B27)
J ) gs—l
The relation given between k9 and k" is
k9= (kY/8y, k2782, ksU/13) (B28)

Thisdcan be shown to follow from equations (B24) and (B27); i.e., multiplication of equation (B24)
by k" gives

k2= kU kg0 ax;/98 ;= ky¥ k08,7 + kot k8270 + kgU ks 857 (B29)

This will hold for all k values if
kY= k9 kaU 9,7t = k9 ks¥ 5™t = k39 (B30)

Equation (B30) agree with equation (B28). Thus, the procedure for caiculation of kY from k¢
presented here reduces ta that of Ribner and Tucker for a diagonal deformation tensor.

b. Velocity Relation

Equation (B 16) for the relation between pre-contraction and post-contraction velocities can
similarly be reduced to the form given by Ribner and Tucker. Notation presents a minor problem in
that the use of the Cartesian indices can be confusing. The notation used here is that a subscriptin
parentheses is a duplicate index and is not summed over unless the index appears twice elsewhere in
the expression. Thus, A; B(i) implies no summation over i, but the variable B has the same index as A.

However, for A, B; C(i): summation over i is assumed with C in each term of the summation taking the
same index as A and B.

Equation (B16) is rewritten into the form used by Ribner and Tucker relating the
post-contraction velocity gd to the pre-contraction value QY (rather than vice versa as in equation
(B16)). Then

0;9(k9) = - (k;3/k2) k)Y 0 UCkY) € (38 /%7) €55k (831)

Using the inverse of equation (B27) gives
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0;9(k%) = - (k3/k29) ky¥ QR U(K") €4 €4jn A(n) (B32)

Now
!1!2“3-—-1 (333)

for incompressible flow since the determinant of the defor mation matrix must be 1 as discussed
previously. Then since €ijn = Q unless i = j = n, equation (B32) can be written

0;9(k%) = = (k;/k?9) kg O UK €mp €550 (¢4 25y 17 (B34)
Using the relation
Elmn E‘]n=8ﬂ 8]m -8]m 6]] (835)
equation (B34) becomes
09 = (k@/k2h a3y 8¢5 1 (kU Q¥ - k¥ 0¥) (B36)
Introducing equation (B30)
k'
oid=_nl_[o,.“- — e oj“] (837)
@ Yo ¥

But this is exactly equation (13) of reference 15. Thus, the present result relating pre-contraction
and post-contraction velocity reduces to the previously derived result of Ribner and Tucker for the
case of a diagonal deformation tensor.
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Figure 1: Geometry of rotor problem.
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Figure 2: Sample cross-correlation of far-fieid noise.
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Figure 4: Sketch of pre-contraction and post-contraction coordinate systems.
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Figure 5: Sinusoidal velocity variation for a wavevector component of turbulence.
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Figure 6: Relation between pre-coniraction and post-contraction wavevectors.
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